Volterra integration operators from Hardy-type tent spaces to Hardy spaces

نویسندگان

چکیده

Abstract In this paper, we completely characterize the boundedness and compactness of Volterra integration operators $J_{g}$ J g acting from Hardy-type tent spaces HT q , α p ( B n ) to Hardy H t in unit ball C for all $0< p,q,t<\infty $ 0 < ∞ $\alpha >-n-1$ > − 1 . The duality factorization techniques sequences play an important role proof main results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilinear Operators on Herz-type Hardy Spaces

The authors prove that bilinear operators given by finite sums of products of Calderón-Zygmund operators on Rn are bounded from HK̇11 q1 × HK̇ α2,p2 q2 into HK̇ q if and only if they have vanishing moments up to a certain order dictated by the target space. Here HK̇ q are homogeneous Herz-type Hardy spaces with 1/p = 1/p1 +1/p2, 0 < pi ≤ ∞, 1/q = 1/q1 +1/q2, 1 < q1, q2 < ∞, 1 ≤ q < ∞, α = α1 + α2 a...

متن کامل

Weighted Composition Operators from Weighted Hardy Spaces to Weighted-type Spaces

The boundedness and compactness of the weighted composition operator from weighted Hardy spaces to weighted-type spaces are studied in this paper.

متن کامل

Bilateral composition operators on vector-valued Hardy spaces

Let $T$ be a bounded operator on the Banach space $X$ and $ph$ be an analytic self-map of the unit disk $Bbb{D}$‎. ‎We investigate some operator theoretic properties of‎ ‎bilateral composition operator $C_{ph‎, ‎T}‎: ‎f ri T circ f circ ph$ on the vector-valued Hardy space $H^p(X)$ for $1 leq p leq‎ ‎+infty$.‎ ‎Compactness and weak compactness of $C_{ph‎, ‎T}$ on $H^p(X)$‎ ‎are characterized an...

متن کامل

Multilinear Calderón-zygmund Operators on Hardy Spaces

It is shown that multilinear Calderón-Zygmund operators are bounded on products of Hardy spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2022

ISSN: ['1025-5834', '1029-242X']

DOI: https://doi.org/10.1186/s13660-022-02836-7